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SUMMARY 

Two-dimensional, finite-amplitude wave propagation in an inviscid, subsonic, perfect gas medium is 
analysed by explicit finite-difference methods. A two-step, Lax-Wendroff method and the single-step, 
Lax-Friedrichs method are used. A prescribed propagating velocity or pressure disturbance is applied 
along a single row of grid points normal to the stream direction and results in a ‘forced’ outflow 
boundary. The inflow boundary is placed far from outflow by utilizing a streamwise expanding grid and 
uniform inflow is imposed. Side boundaries are spatially periodic. The numerical solutions are 
compared with analytical small-perturbation solutions; higher-order effects arising from non-linearities 
are revealed by Fourier analysis. Solutions which closely approached a periodic state were obtained. 
The Lax-Wendroff method combined with the expanding grid is shown to be accurate and stable, the 
Lax-Friedrichs scheme produced highly damped solutions. 

1. INTRODUCTION 

The use of time-marching for resolving fluid flows in, for example, axial flow turbo- 
machinery cascades can be broadly divided into two categories: 

(i) For time-asymptotic steady solutions. These are the familiar procedures where a set of 
initial values is chosen and the time-dependent governing equations time-marched, in 
conjunction with boundary conditions, until a steady flow is attained. The steady flow fields 
of isolated stators and isolated rotor cascades (using a frame of reference moving with the 
rotor) are determinable in this manner. However, physical meaning is usually only attached 
to the final steady state, the numerical results between initiation and convergence being 
discarded-usually with good justification since devices for accelerating convergence, the use 
of artificial stabilizers, and incorrect boundary conditions can result in a poor approximation 
to the unsteady flow regime. 

(ii) For unsteady, small-perturbation solutions. These involve linearizing the time- 
dependent governing equations by assuming that the flow field consists of small amplitude 
periodic variations superimposed on a known steady flow. The resulting equations are then 
time-marched until a steady amplitude solution is obtained; the solutions being qualitative in 
nature and only valid for small amplitudes. Different formulations for subsonic and super- 
sonic flows may be necessary. Ni and Sistol use a formulation which is valid for both Mach 
number regimes to compute the flow field around a harmonically vibrating, flat plate cascade 
(pertaining to flutter analysis), where a ‘forced’ periodic solution is desired. 
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Time-marching, which has little restriction on Mach number or amplitude, could, if 
properly applied, provide quantitative data for design work in areas where trial-and-error, or 
empiricism currently predominate. Moretti2 discusses the feasibility of using time-marching 
for unsteady flows, but as far as the authors are aware, a recent paper by Erdos, Alzner and 
McNally3 is the only attempt to apply time-marching to unsteady flows in the fully non-linear 
case. The computation of the periodic, inviscid, rotor-stator interaction in a transonic fan 
stage is discussed: it involves using a frame of reference fixed to the rotor in conjuction with 
a fixed frame for the stator. A co-ordinate transformation from the physical plane to an 
appropriate computational domain is involved and the resulting procedure loses much of the 
conceptual simplicity of the time-marching method. 

This paper presents the results achieved in the application of time-marching to the 
propagation of finite amplitude waves through a flow field, without the use of co-ordinate 
transformation. This retains the conceptual 'simplicity of the method (and will therefore 
facilitate use with boundaries of arbitrary shape) but has the disadvantage that the computa- 
tional field must be limited to a practical size, the treatment of the resulting computational 
boundaries is emphasized. A simple flow configuration (shown in Figure 1) was used. Initial 
values consisted of a sinusoidal perturbation (obtained from a small-perturbation solution) 
superimposed on a uniform, subsonic stream. 

Along the outflow boundary one wavelength of a propagating finite-amplitude disturbance 
was maintained (corresponding to a pressure amplitude of 1/10 of an atmosphere). A 
prescribed streamwise velocity (or pressure) distribution was used for this purpose and a 
'forced' system resulted. The remaining unprescribed variables were updated by upstream 
finite-difference methods. The frequency of the prescribed variation was chosen so that 
amplitudes decreased towards inflow (i.e. a spatially decaying system; this is discussed in 
Appendix I). The side boundaries were made spatially periodic and the region of interest was 

thus x = L ,  was the effective computational boundary. The objective was to time-march 
the interior of region B1, in conjunction with the boundary conditions stated above to a 
periodic state by using finite-difference schemes based on central-differencing, without 
influence of wave reflections from the inflow boundary. The region was always covered 
with a uniform grid (constant Ax, Ay).  

The auxiliary grid in region %2 was used in two ways. 
(i) With a uniform grid forming an extension of ?A,, computations were continued until 

steady periodic conditions were established in whereas B2 was sufficiently long to ensure 
that disturbances {propagating from 3,) had not reached x = L, (and hence could not be 

I f l ow  

i - l  2 ( x . L , )  NX N X + 1  
( x = O )  ( x = L , )  

Figure 1. Computation grid for non-linear wave motion 
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reflected) when the computation was terminated. This facilitated development of a satisfac- 
tory treatment of the outflow boundary without influence f;om the inflow boundary and 
provided a datum for assessing inflow boundary treatments. 

(ii) With an expanding grid to allow a large value of L, while limiting the number of grid 
points. 

The use of an auxiliary grid incurs computational time and storage which must be 
minimized in any practical application. A number of simple treatments requiring only one 
auxiliary row (L ,=L ,+Ax)  where considered but none were found to be satisfactory, 
Appendix 11.2 presents a list of these with brief explanatory notes. 

2. GQVERNING EQUATIONS AND UPDATING SEQUENCE 

For compressible flow of a non-conducting, inviscid perfect gas, the governing equations in 
conservation form are 

aU aF(U) aG(U) -+- +-=O 
at  ax ay  

where 

and 

(3)  

i.e. p can be expressed in terms of U. The interior point finite-difference schemes (Section 3)  
are based on this system of equations; these in turn are used to compute the finite-amplitude 
(i.e. non-linear) wave propagation discussed in Section 4. 

For comparison purposes, setting of initial values and as an aid to formulating boundary 
conditions, corresponding small-perturbation solutions (valid for small amplitude, and hence 
linear, wave propagation) are used. These are given in Appendix I. 

The updating sequence has five stages (referring to Figure 1 and assuming that U is known 
at time level n at all points of the spatial grid (i.e. for i = 1, . . . , N X +  1; j = 1, . . . , N Y +  1)): 

(1) The interior points are updated (i.e. UrT1 is obtained for i =2, .  . . , N X ;  j = 

(2) Points along the x = 0 outflow boundary are then updated (i.e. UyT1 is obtained for 

( 3 )  The updated values of streamwise velocity (or pressure) aiong the outflow boundary 
are discarded and replaced by a prescribed distribution (which is sinusoidal and of 
wavelength L2). The distribution is prescribed in order to maintain a forced system. 

(4) Boundary conditions at the x = L ,  inflow boundary are then set by assuming that 
uniform flow exists there (i.e. U;T1 is obtained for i = N X +  1; j = 2,.  . . , N Y ) .  

( 5 )  A spatial periodicity condition in the y-direction, of wavelength L,, enables Uc:' 
to be obtained for i = 1, . . . , N X +  1; j = 1 and i = 1, . . . , N X +  1; j = N Y  + 1. 

2, .  . . , N Y ) .  

i = 1; j = 2, . . . , N Y ) .  

The updating sequence can then be continued to time level n +2, and so on. 
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3. FINITE-DIFFERENCE SCHEMES AND BOUNDARY TREATMENTS 

3.1. Two-step, central-difference scheme for interior points 

An explicit, two-step, second-order accurate scheme based on the conservation form of 
the governing equations (1) is used. Second-order accurate operations of central-differencing 
and averaging are used for evaluating derivatives on the non-uniform grid (Figure 2): using 
full points 

using half-points 

($)i = 2(aifi+4+ bifi - cifi-t) 

where 

(6) 
Axi-1 A% - A+I.  Axi b. = , ci = 

Ax~-~(Ax .+~  + Axi) 
a. = 
' Ax, (A+l + A%) ' ' Axi-lAh 

Equations (4) and ( 5 )  are second-order accurate and reduce to the familiar central difference 
forms when = A&. 

Figure 3 shows the finite-difference cell. 
Equation (1) is differenced in a manner similar to that adopted by Burstein? i.e. consider 

satisfying (1) at point (i ,  j ,  n+$) so that 

Therefore 

averaging the spatial derivatives gives (to second-order accuracy) 

U T ~ l - U ~ j  -- 1 [ (-) aF + (E)"-- 1 [ (-) aG n+l  + (97 
At 2 a x i , j  a x i , j  2 a y i , j  a y i , j  

The spatial derivatives in the x-direction are differenced according to (4) and (5 )  and in the 
y -direction the usual central difference approximation for derivatives on an equally spaced 
grid is used-the result is 

AX{-, AXi 
1 -  i- - 4 

n * n 1 .. v w v w - x  
1-1 / - h  i / + a  /+I 

Figure 2. Grid point notation for non-uniform grid 
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i - 1 .  

i -1, j +  1 i ,  j + l  i + i , / + l  

Q n 
Y Q 

I - x  

Figure 3. Finite-difference cell for two-step interior point scheme 

Equation (7) is used to advance the solution at point (i, j )  to time level n + 1. To do this 
however, temporary values of U:zil, UC$$ and U2:l are required in order to evaluate the 
R.H.S. of (7) since FrZi, = F(U::{,,), etc. (the location of the temporary values is denoted by 
X in Figure 3) .  Consider, therefore, satisfying equation (1) at point ( i  +$, j ,  n )  so that 

forward time differencing and central space differencing then produce an expression for 
U::ii (the other temporary values are obtained in a similar manner). The full set of 
temporary values is given by: 

Values at points such as (i +$, j +&, etc., in (8) and (9) are obtained by averaging the values 
at surrounding grid points i.e. 
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The values of F at the half-points in (9) and (10) are obtained as follows: 

F:*I,j+F;j F;*”,:, = 
L, 

For a uniform grid (constant Ax, Ay) the scheme reduced to the inviscid part of a scheme 
used by Palumbo and Rubins for viscous, blunt body flows. Also for a uniform grid, a linear 
stability analysis provides the following stability criterion: 

(13) 
At 1 

C.F.L. = (J(u2+ u”) + C) -5- 
Amin J 2  

where Amin=minimum of Ax or Ay. 

3.1.1. Two-step, one-sided scheme for the outfzow boundary. This scheme is second-order 

The following expressions are used to approximate the spatial derivatives (on a uniformly 
accurate and has a similar structure to the two-step interior point scheme. 

spaced streamwise grid, Figure 4): Derivatives at time level n 

and (for the temporary values) 

Derivatives at time level n + 1  

Equations (14)-( 16) are second-order accurate. The finite-difference cell is shown in Figure 
5.  

The complete scheme is: 

A X  
I +_f low 
, Ax , FA 

I / + $  / + I  I + ?  r + 2  / t H  I i - 3  

outf low ( X  :O) 

Figure 4. Grid point notation for uniform grid at outflow 
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Figure 5. Finite-difference cell for two-step outflow boundary scheme 

The temporary values at U:2:l, U:z&, Uy$31 needed in (17) are obtained when the interior 
points are updated (i.e. they are given by equations (S), (7) and (S), respectively, and need 
not be re-calculated). The temporary values at Uy:,’: are given by: 

The temporary values of Unfl are denoted by X in Figure 5 .  Values such as F:+$,,+g, etc., are 
obtained by averaging the values at surrounding grid points as in (11). 

3.2. One-step, central-difference scheme for interior points and corresponding 
outflow boundary scheme 

As an alternative to the two-step interior point scheme (and for comparison purposes) a 
simple, one-step, explicit, first-order accurate scheme is used. It is formed by forward 
time-differencing equation (1) to give 

If central-differencing is used for the spatial derivatives a numerically unstable scheme 
results. However, if Urj is averaged, then central-differencing can be retained and the 
following stable scheme results: 

u;+l,j + U;-E_IJ + u;j+l + u;j-l un+l= 
4 131 

This scheme possesses high dissipation (i.e. numerical damping, as is shown by the numerical 
results in Section 4), and is sometimes referred to as the Lax-Friedrichs scheme (see 
Reference 6, pp. 242-244). Roache6 also gives the following linear stability criterion for (19) 
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on a uniform grid (constant Ax,Ay):  

Using one-sided differencing in the x-direction, the corresponding scheme for the outflow 
boundary is 

3.3. Setting prescribed conditions along the outflow boundary 

3.3.1. Setting the streamwise velocity distribution. The conservation variables (p, m, n, e,) 
are updated along the outflow boundary, to time level n + l .  These are then converted to 
values of density, velocity and pressure (i.e. to (p, u, v, p)). 

The updated streamwise velocity (u )  is then replaced by a prescribed distribution (denoted 
u") on the interval O S y S L , .  New conservation values (denoted by m* and e,*) are then 
formed as follows: 

m" =pa" 

m * 2 -  m2 
2P 

e:=e,+ 

The conservation variables (p,  m*, n, e,*) are then used in the next stage of updating. 
By forming m" and e$ in this manner, only the updated values of streamwise velocity are 

altered (i.e. the updated values (p, u, v, p) are altered to (p, u", v, p) at the same time level). 

3.3.2. Setting the pressure distribution. In this case the updated pressure (p) is replaced by 
a prescribed distribution (denoted p") on the interval 0 5 y s L,. New conservation values of 
energy (denoted by e:) are then formed as follows: 

By forming e,* in this manner, only the updated values of pressure are altered (i.e. the 
updated values (p, u, v, p) are altered to (p, u, v, p") at the same time level). 

3.4. Inflow boundary procedure 

The boundary was initially placed at x = L,  (see Figure 1) and various extrapolation 
procedures were used to set the boundary values. 

This approach was found to be unsatisfactory, either instabilities were induced or the 
extrapolation methods tended to become too intricate in detail, and therefore so problem- 
dependent, as to be of little general use. These procedures are summarized in Appendix 11.2. 

Owing to the inadequacies of extrapolation at x = Ls, the inflow boundary is placed at a 
large distance from outflow so that a uniform flow can be assumed at x = L,. 

In order to set the boundary conditions, a phenomenon of the non-linear wave propaga- 
tion must first be anticipated-that of causing a change in mean values of the flow properties. 
Examination of the small-perturbation solution (42) shows that along any line x = constant, 
in the interval 0 i y 6 L2 (and assuming k = 27r/L2), the variations consist of the uniform 
stream values plus one wavelength of a sinusoidal perturbation. The means of the variations 
are therefore the uniform stream values (i.e. the means of the perturbations are zero). 
However, the numerical results presented in Section 4 show that the means differ from the 
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uniform stream values set initially. The means of p, u and p were found to change in the 
form of a plane wave which propagated through the medium from outflow to inflow at an 
approximate speed given by 

which is the speed of small disturbances in the uniform stream. This wave motion forms part 
of the start-up transient and provision for the variation in the means must be made at the 
inflow boundary (as the field approaches a periodic state, the mean levels become steady 
and, as will be shown in the results section, mass and momentum become closely conserved 
in the region over a cyclic interval). 

c,= c()+ u, (24) 

The variation of the means is governed by the equation 

E+c -=0 aM 
a t  , a x  

where M = M(x, t) is the mean of p, u or p along line x at time t on the interval 0 5  y 5 L,. 
The solution of (25) is M(x, t) = M(x - c,t), which is a plane wave moving in the x-direction 
at speed c,. Equation (25) is updated at inflow by the following expressions: 

(i) Uniform grid at inflow 

Scheme (26) is based on the single-step Lax-Wendroff method (Reference 7, pp. 300-302). 
The spatial derivatives are approximated by one-sided differencing. (26) is stable if 

A t  
Ax 

c,-.c=2 (for c,rO) 

(ii) Expanding grid at inflow 

At  
which is stable if c, - 5 1 (assuming c, 2 0). 

h 
Uniform flow conditions at inflow are then set by the following: 

P = Pmean 

P = Pmean 

where the means are given by (26) or (27) (Uh$il,J is then formed from these values). 

3.5. Side boundaries 

distance L2 apart will be equal. This is achieved by setting 
A spatial periodicity condition in the y-direction is enforced so that the variations a 

(29) n + l  __ Ui,l - U S - l  
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4. RESULTS AND DISCUSSION 

Figures 6(a) and 6(b) show the streamwise grids used. The expanding grid region in Figure 
6(b) has Ax,+l = rAh, where r = 1.1. For both grids L,  = 80 Ax, L, = 40 Ay, with AyJAx = 
11/8. 

The majority of the computations were carried out using the following perfect gas 
constants and uniform stream values: 

cP = 1006 Jkg-' K-'; y = 1-4 
P, = 105 Nm-'; T~ = 300 K 

M, = -0.5 (therefore U, = -0.5C,) 

The computation of a spatially decaying amplitude system was undertaken (for which 
Solution A (42) is the small-perturbation counterpart). Solution A was used to set the initial 
values by defining the following; 

k = 27r/L2 (for L2 = 0.20955 m) 
f = 1368 Hz 

A, = lo4 Nm-' 

Equation (43) was then used to determine the amplitudes A, and A, the numerical values 
are: 

A, = 14.538670 ms-.' 
A, = 22.279470 ms-l 

Equations (42) were then evaluated at t = O  and an initial conservation vector, U, set. 
The relative Mach number of the wave in the y-direction, My, (defined in Appendix 1.2.1) 

is -0.825, which satisfies the criterion for a non-uniform amplitude solution of (36). 
Solution A was also used to prescribe the values of u or p along the outflow boundary, 

each time-step, in accordance with the procedures outlined in Sections 3.3.1, and 3.3.2. To 

extended uniform gr id  

f e x =  3 , 6 7 5  L ,  

f l o w  
Iconstant A X ,  constant A X  

I 

i :  I i s 8 1  i 5 3 7 5  

x =o 
expanding gr id  

/ Le,*=5L, 4 
constant A X ,  f increasing AX -.-.--- I I  I 

I 4 
i = <  i .81 i =  120 

I b )  ( N X + l )  

Figure 6. Streamwise grids used for computations: (a) extended uniform grid, (b) 
uniform-expanding grid 
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prescribe u, (42a) is evaluated at x = 0; to prescribe p, (42c) is evaluated at x = 0. The 
prescribed u variation is a wave of amplitude A,, whereas the prescribed p variation is a 
wave of amplitude A, (i.e. 1/10 of an 'atmosphere', Po); the prescribed variation moves in 
the y-direction at a speed c, = CJ4,, f= 286.6 ms-l. 

The time-step was set with the aid of the relation 

At = l / ( f .  NTC) (33) 
Where NTC =number of time-steps per cycle of the prescribed variation; for NTC = 180, 
maximum C.F.L. values of approximately 0.55 were obtained, thus satisfying the stability 
criterion (13). 

As an aid to presentation, a Fourier analysis was performed on the variations. Consider, 
for example, the computed pressure along the line x =constant at time t (denoted pc), a 
Fourier analysis enables this to be written as 

where pmean is the mean of pc on the Fourier interval 0 5 y 5 L2, p(,., is the amplitude and 
the phase of the rth-order component of pc. The corresponding small-perturbation solution 
given by (42c) has the form 

p(y)=P,+A,sin %+a 
( L 2  ) (35) 

which may be regarded as a 'first-order' solution to the non-linear problem (i.e. comprising a 
mean + a single harmonic of wavelength L2). By performing the analysis along each line, 
x = constant, in the grid at fixed times (after integral numbers of cycles of the prescribed 
variable at the outflow boundary have elapsed), the streamwise distributions of the means, 
amplitudes and phases of the variations were obtained. 

The first calculation was performed on the extended uniform grid shown in Figure 6(a). 
The two-step scheme was used to update the interior points and u was prescribed along 
outflow as outlined in Section 3.3.1. The means of p ,  u and p were updated at inflow by 
using (26) for c, given by (24) (i.e. in the case c, = 0.5 C,). The inflow boundary conditions 
were set according to (28). 

Figures 7(a), (b), (c) show how the means distributions develop with time. Since the initial 
values consist of the uniform stream values plus one wavelength of a sinusoidal perturbation 
along each grid line x =constant, the means at t = 0 (0 cycles) are pmean = pol u,,, = U,, 
urn,,, = 0, pmean = Po. The prescribed u variation also has this form, therefore u,,, = U, at 
the outflow boundary at all times. The means of p, u and p develop in the form of a plane 
wave which moves towards inflow at very nearly the disturbance speed c, (as defined by 
(24)). The means of u develop in a different manner, as shown. After 16 cycles (i.e. after 16 
wavelengths of the prescribed u variation have passed along the outflow boundary) the 
start-up transient has propagated out of the region to leave an almost steady distribution of 
mean values. Thus the passage of the large amplitude wave causes a change in the mean 
values set initially (this implies that the wave develops an asymmetry with respect to the 
original mean values). 

Figures 8(a), (b), (c) show how the pressure amplitude distributions develop with time. 
These are obtained from the Fourier analysis and amplitude distributions of the first three 
pressure components are shown (the fourth and fifth-order components have peak amp- 
litudes of the order of 1000Nm-2, amplitudes of the higher-order components are less 
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Figure 7. Variation of mean p, u, and v using two-step interior point scheme on 
extended uniform grid with u prescribed along outflow boundary 
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Figure 8. Variation of first, second and third-order pressure component 
amplitudes using two-step interior point scheme on extended uniform grid 

with u prescribed along outflow boundary 
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significant). The calculation was stopped after 16 cycles because a build-up of the first-order 
pressure component amplitudes was observed near the inflow boundary. Continuing the 
calculation beyond this stage, using the uniform inflow assumption, results in unwanted 
reflections propagating back into the region. The amplitudes are seen to converge towards a 
steady distribution (especially in the region 0 5 x  I&). Therefore after 16 cycles the field is 
close to a periodic state at the frequency of the prescribed u variation. At time t = 0 all the 
component amplitudes except the first were zero. The higher-order components develop 
from the 'first-order' initial values as E result of non-linearities present in the governing 
equations. The first-order component amplitudes retain a close similarity with the exponen- 
tially decaying distribution set at t = 0. 

Because a travelling wave solution is obtained, the amplitude distributions of the p, u and 
zi components are similar in shape to the pressure amplitude distributions shown, except for 
slight differences near the outflow boundary. These differences occur because u has only a 
single component at outflow (i.e. u ( ~ )  = A,, u(*) = q3) = . . . . . = 0, at all times). However, since 
u is the only variable altered during the prescribed boundary treatment, p, zi and p will be 
free to develop small higher-order components, and changes in mean values, at the outflow 
boundary (Figures 8(b), (c) show this effect clearly in the case of the pressure amplitudes). 
The amount by which u is altered in the prescribed outflow boundary treatment is very small 
(e.g. at 16 cycles, the difference between the updated velocity ( u )  and the prescribed velocity 
(u*)  which is used to replace it, is a maximum of ~ 0 . 6  per cent of the amplitude (A,) of the 
prescribed velocity, i.e. max Iu* - uI X 100/A, = 0.6). Table I shows the amplitudes and 
phases of the first-order components at 16 cycles at the outflow boundary for prescribed u 
(and p), the corresponding values given by Solution A are also given for comparison 
purposes. 

At 16 cycles the phase distributions of the first-order components in the interval 0 I x I L,  
are almost linear and of a similar slope to the distribution given by Solution A. 

At  16 cycles, the means throughout the region and the amplitudes at the outflow 
boundary, are very nearly steady; near the inflow boundary the components have small 
amplitudes and the means of u are zero: under these conditions an examination of the mass 
and momentum conservation in the region was made. Since the side boundaries are spatially 
periodic, the net flux of mass and momentum into the region across these boundaries is zero 
at any instant-thus only the inflow and outflow boundaries need to be considered. 

The mass and momentum transport across the inflow and outflow boundaries during one 
cycle were calculated as follows: at inflow, where the wave amplitudes are negligible, the 
mass and momentum fluxes were evaluated from the mean levels; at outflow, where the 
first-order components have large amplitudes, the mass and momentum fluxes were 
evaluated from the means and first-order components of the variations, and integrated over 

Table I. Amplitudes and phases. Values at 16 cycles at x = 0 (outflow) 

Time-marched first-order component 

Variable Prescribed u Prescribed p 
Solution A 

Amplitude Phase" Amplitude Phase" Amplitude Phase" 

p 0.082836 kgm-3 9.070 0.081549 11.422 0.082928 9-032 
u 14.538670 ms-' 32.559 14.538670 32.559 14-521890 29.832 
u 22.279470 ms-' 0.0 21.572240 2.817 22.051387 0.907 
p 10000~0 Nmp2 9.070 9844.7 11.317 10000.0 9.070 
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the cycle along the length (L2) of the boundary. The following values were obtained: 

mI=201*009L2t,; riio=201-O05 L2tp kg 
MI = 135081 L2&; 

NI=O; 

Mo = 135081 L,tp kg.m.s-' 
No = -4.08 L2tp kg.m.s-' 

Therefore mass and momentum are closely conserved in the computational region over one 
cycle of the periodic state. A significant discrepancy in mass and momentum conservation in 
the region would prevent the convergence of mean levels (and amplitudes) to steady 
distributions. 

The second calculation involved prescribing p along the outflow boundary instead of u. 
Thus, at outflow, pmean = Po, p(l) =A,, p(2) = p8) = . . . , = 0, at all times. In this case p is the 
only variable altered in the prescribed boundary treatment (see Section 3.3.2), therefore p ,  u 
and II are free to develop small higher-order components and changes in their mean values 
at the outflow boundary. Except in the region close to outflow, the amplitude distributions at 
16 cycles were not markedly different from those obtained when u was prescribed. Figure 
9(b) shows the amplitude distribution of the second-order pressure components for the two 

16 cycles, p prescribed along 
outflow boundary 

outflow boundary 
.- 16 cycles, u prescribed along ---- 

1600 

1200 
N 

E 
*;; 800 
Q- 

400 

-- 
X / L ,  

0 

Figure 9. Second-order streamwise velocity and pressure component amplitudes 
at 16 cycles produced by two-step interior point scheme on extended uniform 

grid; difference between prescribing u or p along outflow boundary 
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cases. Prescribing u resulted in marginally better convergence, i.e. after 16 cycles the 
calculation was closer to a periodic state than was the calculation using prescribed p. 
However at 16 cycles, the prescribed p calculation was close enough to a periodic state to 
enable an examination of the mass and momentum conservation in the region to be carried 
out in the manner described above; mass and momentum were again found to be closely 
conserved in the region. The amplitudes and phases of the first-order components at 16 
cycles at the outflow boundary are included in Table I. 

The only significant inconsistency in the outflow boundary treatment occurs in the 
amplitude distribution of the second-order u component when p is prescribed at outflow. 
Figure 9(a) shows a sharp jump in the distribution near the outflow boundary when p is 
prescribed; removed from this region there is little difference between the distributions. 

Various combinations of the two-step and one-step interior point schemes were used for 
calculations on the grid system shown in Figure 6(b) (i.e. using a uniform grid for 0 5 x 5 L, 
and an expanding grid for x ZL,). In these calculations u was prescribed along outflow and 
the means at inflow were updated using (27). The calculations were continued for 36 cycles 
without any evidence of instability. At  inflow the amplitudes were damped to negligible 
values as a consequence of the expanding grid, and boundary conditions (28) could be used 
at all times. Figure 10 shows the resulting amplitude distributions of the first-order pressure 
components at 16 cycles. The damping effect of the expanding grid as well as the high 
inherent damping of the one-step interior point scheme are apparent from the distributions. 

Figure 11 shows the development of the pressure means when the two-step scheme was 
used on the uniform grid with the one-step scheme on the expanding grid region. After 
about 6 cycles the distribution in the region 0 I x 5 L, is almost steady, at subsequent times, 
outside this region, the distribution levels towards an ultimate constant value shown dotted. 
This levelling out occurs more rapidly (after about 30 cycles), though less smoothly, when the 
two-step scheme is used on both regions. 

10000 
one-step interior point scheme on uniform grid ( 0 5 x 5  L, ) - - - t  one-step interiorpoint schemeon expanding grid ( x ? L ,  ) 

two-step interior point scheme on uniform grid ( 0.5 x 5  L, ) - - I  one-step interior point scheme on expanding gr id ( A'? L, ) 

two-step interior point schemeon uniform grid (05 X Z  L, ) - 1  two-step interior point scheme on expanding gr id(  x Z L ,  ) 
y 6000 

E 

2- 

two-step interior point scheme on extended uniform grid 

.- 
Q- 

4000 

2000 

0 ~ - . -. -. - .__ ._ 
I I I 1 x / i , -  

0 1 2 3 4 5 6 

Figure 10. Comparison between first-order pressure component amplitudes at 16 cycles on extended 
uniform grid and on uniform-expanding grid; u prescribed along outflow boundary 
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Figure 11. Variation of mean pressures produced by two-step interior point scheme on uniform grid 
(0 5 n 5 L,) and one-step interior point scheme on expanding grid (x 2 L J ;  u prescribed along outflow 

boundary 

( 1  =81) (/=120) 

For comparison purposes, O s x s L ,  is taken to be the region where the solution is 
desired; the solution obtained using the extended uniform grid is used as the basis for 
comparisons in this region. On this basis, the solution obtained using the two-step scheme on 
both the uniform and expanding grid regions, is the most accurate. Examination of the 
distributions given by this solution at 16 and 36 cycles showed that little change occurred 
after 16 cycles in the region concerned. The solution obtained using the two-step scheme on 
the uniform grid and the one-step scheme on the expanding grid is also quite accurate. 
However convergence to a periodic state was slower in this case (requiring about 20 cycles 
for the component amplitudes to steady). The solution obtained using the one-step scheme 
on both the uniform and expanding grid regions has heavily damped amplitude distributions 
which converged after about 4 cycles; amplitudes of components greater than the second- 
order are negligible-this magnitude of damping is undesirable. 

Table I1 shows a comparison of computer run times (calculations performed on a C.D.C. 
7600 computer). 

Table 11. Computer run times 

Uniform Expanding Run Run 
Grid grid grid Time time Time time 

system scheme scheme Cycles steps (s) Cycles steps (s) 

Extended 

Figure 6(a) 
Two-step Two-step 16 2880 1500 36 6480 3375 

expanding grid Two-step One-step 16 2880 840 36 6480 1890 
16 2880 700 36 6480 1575 

Uniform- 

Figure 6(b) 

uniform grid Two-step - 16 2880 3400 - - - 

1 One-step One-step 
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Thus the use of the expanding grid, in conjunction with the two-step scheme throughout, 
enables an accurate solution to be obtained in the uniform grid region, O S X S L , ,  for less 
than half of the computational effort required by the extended uniform grid calculation 
(comparing run times for 16 cycles). The coding used for the extended uniform grid 
calculation was reasonably efficient: however, in the programs used for the uniform- 
expanding grid calculations there is much scope for improving the efficiency of the coding- 
the run times quoted for these cases could therefore be significantly reduced. 

Further calculations of spatially decaying systems were performed for throughflow Mach 
numbers of M, = -0.2 and -0.8 with other values as defined by relations (31) and Table 111. 
The uniform-expanding grid of Figure 6(b) was used in conjunction with the two-step 
scheme throughout, u was prescribed along outflow. 

Table 111. Parameter values for M, = -0.2 and -0.8 calculations 

A, A, A, 
M, f(Hz) M ,  (Nm-2) (ms-') (ms-') NTC C.F.L. 

-0.2 1525 0.920 lo4 ~ 1 0 . 3 5  ~ 2 5 . 8 3  120 ~ 0 . 6  
-0-8 950 0.573 lo4 -20-67 -15.13 268 -0.65 

The computations were run for 36 cycles and an approximate periodic state was attained 
in the uniform grid region O s x s L ,  in about 20 cycles for Mx=-0.2 and 27 cycles for 
M x = - 0 * 8 .  

5.  SUMMARY OF CONCLUSIONS 

The propagation of spatially decaying finite-amplitude waves in an inviscid, perfect gas 
medium, was examined by time-marching methods based on finite-differences. 

Numerically stable solutions were obtained by prescribing a propagating distribution of 
streamwise velocity or pressure along the outflow boundary. The prescribed pressure 
distribution had an amplitude of 104Nm-2 (equivalent to & of an atmosphere). The 
unprescribed variables at outflow were updated by one-sided finite-difference schemes. 

Conditions approaching periodic states were obtained for a wide range of subsonic 
throughflow Mach numbers. Non-linearity of the physical system caused higher-order 
components to develop from an initial single component perturbation, changes in the mean 
values of the initial uniform stream also occurred. 

Prescribing the streamwise velocity component along outflow was found to be slightly 
more satisfactory than prescribing the pressure as far as convergence and physical consis- 
tency were concerned. 

Two spatially centred schemes were used to update the interior points-these being a 
second-order accurate, two-step Lax-Wendroff method and the simple, first-order accurate, 
one-step Lax-Friedrichs method. Steady amplitude distributions were obtained after about 4 
cycles (of the prescribed variation along outflow) when the one-step method was used. 
However the amplitude distributions were heavily damped as a result of high numerical 
dissipation in the scheme. Satisfactory amplitude distributions were obtained by using the 
two-step Lax-Wendroff method, though runs in excess of 16 cycles were required before an 
approximate periodic state was attained. 

In the absence of any prescribed variation along outflow, the one-sided schemes were 
found to be numerically unstable when applied at a subsonic outflow boundary. 
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Extrapolation at the inflow boundary was found to be unsatisfactory, either gross in- 
stabilities were induced, or a general lack of convergence to temporal periodicity resulted. 

Difficulties in setting the inflow boundary conditions were alleviated by using an expanding 
streamwise grid to follow on from a uniform grid region. This enabled the inflow boundary to 
be placed at a position where amplitudes had decayed to negligible values-a uniform inflow 
condition could then be used. The increased numerical damping in the expanding grid region 
did not adversely affect the variations in the uniform grid region when the two-step, 
Lax-Wendroff method was used to update both regions. 

APPENDIX I. SMALL-PERTURBATION SOLUTIONS 

The analytical, small-perturbation solution of the non-linear wave motion computed in 
Section 4 is given in this Appendix. The analytical solution is used to obtain initial values for 
the time-marching calculations, and is also used for comparison purposes. 

The system of small-perturbation equations is given in Appendix 1.1. A solution of the 
system for non-uniform amplitude waves is given in Appendix 1.2. The particular solution 
used for setting initial values is given in Appendix 1.3. This solution (referred to as Solution 
A) is the small-perturbation counterpart of the computed non-linear wave motion discussed 
in Section 4. 

1.1. Small-perturbation equations 

The small-perturbation equations are obtained by linearizing the normal (non- 
conservation form) Euler equations. The equation of continuity, the two equations of 
motion, the homentropic flow relation (i.e. plp’ =constant), and the equation of state, are 
linearized by assuming that the flow field consists of a steady uniform stream plus a small, 
unsteady perturbation (i.e. u(x, y, t )  = Uo+ u’(x, y, t) ,  v(x, y, t )  = Vo+ v’(x, y, t ) ,  p(x, y, t )  = 
P,+p’(x, y, t ) ,  etc.; products and powers of the perturbation variables are assumed to be 
negligibly small quantities). The above assumption, together with that of flow irrotationality, 
enables the following convective wave equation in the perturbation velocity potential to be 
derived (where V, = 0 has been assumed): 

For a prescribed uniform stream, (36) can be solved for 4’; the following expressions can 
then be used to determine the small-perturbation field: 

p’ = p’lc; I 
1.2. Solution of the convective wave equation 

solutions of the form 
For circular frequency o and wave index k (and assuming o > 0, k > 0, IMxl < 1), (36) has 

(38) 41 ~ ~ ( h i = t r t J s ) x ~ i ( k y + ~ t ) .  , ( i  =J-1> 
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where A is arbitrary, and 
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The nature of solutions (38) depends on the sign of s. For s > 0 a non-uniform amplitude 
results, for s s 0 a constant amplitude results. Furthermore, the real and imaginary parts of 
(38) are also solutions of (36). 

1.2.1. Non-uniform amplitude solutions. It follows from (39) that s > 0 if 

w < C,kJZ, (40) 
The following non-uniform amplitude solutions of (36) can be deduced from (38): 

(eight expressions). The travelling wave nature of (41) is made apparent by writing 

sin(Ax-ky+wt)=sinL - r+- t* 3 
(where L = X i  - k j and L2 = A 2  + k2), which represents a two-dimensional sinusoidal profile 
travelling in the -L direction with absolute speed c, = w/L. This is shown geometrically in 
Figure 12 (where M, < 0 has been assumed). 

Along x = constant, (41) reduces to 4’ = B sin (kky +wt  + p), which is a wave travelling in 
the ‘Fy-direction with absolute speed cy = w/k and amplitude B. The relative Mach number 
of the wave in the y-direction is defined as My, = w/kC,. By virtue of inequality (40) it 
follows that non-uniform amplitude solutions of (36) occur if My, < JZ,. 

1.3. Solution A 

The following non-uniform amplitude solution of (36), which has the form of (41), was 
used to set the initial values and the prescribed boundary conditions at outflow in the 
time-marching calculations discussed in Section 4: 

4’ = -AeCJS cos (Ax  - ky + wt )  

Figure 12. Two dimensional travelling wave 
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Equations (37) give the small-perturbation field: 

where 

(42a,b,c) 

u = ff, + A,e-xJs sin [ k y  - Ax - ot - arctan(ds/A) + T] 
v = A,,e-”Js sin [ k y  -Ax - ot] 

p = Po + sin [ k y  - Ax - ot - arctan( U,ds/(w + UJ))] 

I A, =AJ(A~+s) 
A, = k A  
A, = p0AJ[ (w + ff,A)2+ Ugs] 

(43) 

and A is arbitrary. (42) is referred to as Solution A in the text. 
At fixed time ( t  = tl) along the equally spaced lines x -Ax, x, x +Ax, p’ has the form 

where A, is the amplitude and E, the phase of the variation along the line x = constant, i.e. 

where 8 is a constant. Therefore at any instant the amplitudes vary exponentially, and the 
phases vary linearly with x (this also applies to the other perturbation variables). 

APPENDIX 11. SUMMARY OF BOUNDARY TREATMENTS WHICH WERE 
EXAMINED AND FOUND TO BE UNSATISFACTORY 

11.1. OutfEow Boundary (at x = 0, see Figure 1 )  

time step. 

bances. 

bance (the converse of (a)). 

that it is stable in a supersonic flow and unstable in subsonic flow. 

(a) Using the small-perturbation solution (Appendix 1.3) to prescribe p, u, u, p at each 

This amounts to overprescription and generates non-physical, short wavelength distur- 

(b) Updating all the variables by one-sided differencing after imposing an initial distur- 

This is numerically unstable, Warming and Beam’ use a linear stability analysis to show 

11.2. Inflow Boundary (at x = L,, see Figure 1 )  

unconditionally unstable. 

were considered: 

(a), Updating by one-sided differencing. A linear stability analysis shows this to be 

(b), Extrapolation of the primary variables (p, m, n, e J .  Three methods of extrapolation 

(i) Polynomial extrapolation along y = constant lines 
(ii) Extrapolation using a quadratic least squares fit along y = constant lines. 

(iii) Extrapolation of amplitudes and phases of each component of the y -direction 
variations in accordance with the properties of the small-perturbation solution (i.e. an 
extrapolation procedure based on equation (45)). 
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All three methods proved to be unstable, the rate at which instability develops increasing as 
the number of data points used is increased. The instability is associated with the transients 
which reach the boundary before a periodic state is reached. 

NOTATION 

A = constant 
A,, A,, A, = peak amplitudes of p ,  u, v 

A,, E, = amplitude and phase of variation in y-direction 
C.F.L. = Courant-Friedrichs-Lewy stability criterion 

c = d(yRT) = 'speed of sound' 
c, = J(YRT0) 
c,=c,*u, 
c, =specific heat at constant volume 
c, =wave speed in direction of propagation 
c, =wave speed in y-direction 

e, = p c,T+------ = total energy per unit volume * (  u2+v2 i  2 
F, G = vector functions of U 

FEl, etc. = F at discrete co-ordinates (i, j ,  n)  
f = frequency or function of x 
h = streamwise grid spacing 

i, j=unit vectors in x and y directions 
L = vector in direction of wave propagation 
L =magnitude of L 

L,, L2 =spatial field lengths in x and y-directions 
L,, L,,, L,, =spatial grid lengths in x-direction (see Figs. 1, 6) 

M = function representing distribution of mean quantities (see equation. 

M,, Mo = x-momentum transport across inflow and outflow boundaries during 
(25) 

one cycle 
M, = u,/c, 

m = pu = x-momentum per unit volume 
mean (subscript) = mean of variation on interval 0 I y ."= L2 

rnl, rn, =mass transport across inflow and outflow boundaries during one cycle 
NTC=number of time-steps per cycle of variation 

NX, N Y  = grid point numbers (see Figure 1) 
N,, No = y -momentum transport across inflow and outflow boundaries during 

n = pv = y-momentum per unit volume 
one cycle 

0 (subscript) = steady uniform stream values 
p = pressure 

p', etc =perturbation pressure 
pol, cbo, = amplitude and phase of rth-order component of p 

3 =spatial region (see Figure 1) 
R = gas constant 

r = xi + y j = position vector 
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r = Axi+JAxi =expanding grid ratio (see Figure 6(b)). 
( I )  (subscript) = component number 

s =as defined by equation (39) 
T = temperature 

tp = l/f = periodic time 
u = (P, m, n, e”) 
u =velocity in x-direction (streamwise) 

v = velocity in y-direction 
qr) = amplitude of rth-order component of u 

Z,=l-M: 
a, p, 8 = constants 

y = adiabatic index 
A =as defined by equation (39) 
p = density 

(6’ =perturbation velocity potential 
w = 2nf = circular frequency 
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